Стандартная ошибка регрессии и R-квадрат являются ценными математическими расчетами, которые можно использовать для оценки набора данных. Хотя эти два расчета похожи, между ними есть явные различия, которые делают их применение уникальным. Научившись использовать стандартную ошибку регрессии и R-квадрат, вы сможете улучшить свои аналитические способности и стать более эффективным специалистом. В этой статье мы обсудим, что такое стандартная ошибка регрессии, что такое R-квадрат и как эти два показателя сравниваются, включая ключевые различия в их применении.
Что такое стандартная ошибка регрессии?
Стандартная ошибка регрессии - это мера логической регрессии, которую можно применить к набору данных, чтобы определить, насколько далеко среднее значение в наборе данных находится от линии регрессии данных. Это дает представление о том, насколько точно ваша регрессия соответствует набору данных и насколько уверенно вы должны оценивать значение, полученное с помощью линии регрессии. При проведении анализа значений со стандартной ошибкой регрессии примерно 95% наблюдаемых данных должны находиться на расстоянии менее двух стандартных ошибок регрессии от линии регрессии.
Что означает R-квадрат?
R-квадрат - это регрессионный показатель, применяемый к набору данных и анализирующий взаимосвязь между зависимой и независимой переменными. Нахождение коэффициента R-квадрат показывает, какой процент зависимой переменной можно точно предсказать на основе значения независимой переменной. Более высокое значение R-квадрат указывает на сильную корреляцию между двумя переменными, в то время как низкое значение R-квадрат указывает на то, что между двумя переменными существует менее прямая корреляция. Это может помочь вам определить, насколько предсказуемо вы можете учесть изменения в объеме производства, изменив один из производственных факторов, например.
Стандартная ошибка регрессии vs. R-квадрат
Хотя и стандартная ошибка регрессии, и R-квадрат могут дать ценную информацию при оценке набора данных, между ними есть важные различия, которые помогут вам определить, какой из них более полезен или вы можете эффективно применять оба показателя. Ключевые различия между R-квадратом и стандартной ошибкой регрессии включают:
Единицы измерения
Первое существенное различие между этими двумя расчетами заключается в единицах, в которых они возвращают значения. При расчете R-квадрат вы получаете значение в виде десятичной дроби без единиц измерения. Вы можете преобразовать это значение в процент, умножив его на 100. R-квадрат остается таким независимо от единиц, используемых для анализируемой информации.
При расчете стандартной ошибки регрессии вы получаете ответ в тех же единицах, что и ваша независимая переменная. Например, оценка максимальной скорости автомобилей в сравнении с их лошадиными силами даст R-квадрат, измеренный в процентах, и ошибку регрессии, измеренную в милях в час.
Предоставленная информация
Так же, как оба расчета используют разные единицы измерения в своих результатах, стандартная ошибка регрессии и R-квадрат также предоставляют разную информацию, когда вы их используете. Стандартная ошибка регрессии предоставляет конкретную информацию, связанную с точными показателями переменных, которые вы измеряете. Функционируя в единицах, которые вы использовали для измерения зависимой переменной, она показывает, насколько точно вы можете предсказать производительность, основываясь на знании независимой переменной.
R-квадрат не предоставляет вам непосредственно применимую информацию о том, насколько точно вы можете оценить значение на зависимом уровне. Вместо этого она позволяет проанализировать существующие результаты и определить, какую часть показателей зависимой переменной можно напрямую отнести на счет влияния независимой переменной.
Практическое применение
Эти различия в единицах измерения и информации оказывают существенное влияние на практическое применение каждого расчета. Стандартная ошибка регрессии позволяет определить предполагаемые уровни эффективности и уровень доверия к ним. Низкая стандартная ошибка регрессии означает, что ваши данные более плотно прилегают к линии регрессии, и вы можете более точно предсказать результаты на определенном уровне зависимой переменной. Это часто более понятное применение, так как получение информации в единицах, которые вы измеряете, облегчает понимание результатов стандартной ошибки регрессии.
Практическое применение R-квадрат лучше всего использовать для определения взаимосвязи между двумя переменными. Анализ корреляции между зависимой и независимой переменными может помочь вам принимать обоснованные бизнес-решения. Например, выявление сильной связи между качеством компонента и удовлетворенностью клиентов может продемонстрировать ценность инвестиций в более дорогое сырье в процессе производства. Выявление корреляции с низким R-квадрат вместо этого указывает на минимальное влияние на зависимую переменную, если вы внесете изменения в независимую переменную.
Пример стандартной ошибки регрессии vs. R-квадрат
Компания проводит анализ эффективности рекламных кампаний, связанных с продажами отдельного продукта в своей линии. Компания ранее провела пять рекламных кампаний, с разными бюджетами для каждого случая. Они создают набор данных, записывая маркетинговый бюджет, выделенный на каждую кампанию, количество продаж, сгенерированных в ходе каждой кампании, и соотношение долларов на продажу для каждой кампании.
Маркетинговый бюджет |
Продажи |
Коэффициент ($sale) |
Стандартная ошибка |
|
1 |
$6,100 |
191 |
32 |
54.588 |
2 |
$13,600 |
470 |
29 |
|
3 |
$13,400 |
574 |
R-квадрат |
|
4 |
$13,300 |
451 |
0.92001 |
|
5 |
$6,700 |
221 |
92% |
Используя автоматизированные функции в своей программе электронных таблиц, компания рассчитывает стандартную ошибку регрессии и R-квадрат для маркетинговых данных. В документе получен R-квадрат 92%, что указывает на сильную связь между расходами на маркетинг и продажами, сделанными. Увеличение или уменьшение расходов оказывает значительное достоверное влияние на количество продаж. Расчет стандартной ошибки регрессии дает значение 54.588, что означает, что данные по продажам отличаются от линии регрессии в среднем на 54.588 продажи. Поэтому, оценивая продажи для установленного бюджета, компания может ожидать, что средняя ошибка составит менее 55 от общего объема продаж.
- indeed.com
Поделиться