Chaos Theory (Теория хаоса) (Lorenz Poincaré)

Изучение комплексных и динамических систем для выявления закономерностей порядка (нехаоса) из очевидных хаотичных явлений. Объяснение Chaos Theory (Теория хаоса) Lorenz ('60) и Poincaré. (ca 1900)

фрактал (chaos theory (теория хаоса) применения имиджа)Что такое Chaos Theory (Теория хаоса) ? Описание

Методом Chaos Theory (Теория хаоса) от Lorenz и Poincaré будет методика можно использовать для систем изучать сложных и динамических для того чтобы показать закономерности порядка (нехаоса) из по-видимому хаотичных поведений.

«Chaos Theory (Теория хаоса) - Качественное изучение неустойчивого апериодического поведения в детерминистических нелинейных динамичных системах» (Kellert, 1993, P. 2). Апериодическое поведение наблюдается, когда нет ни одной переменной, описывающей состояние системы, которое испытывает регулярное повторение значений. Неустойчивое апериодическое поведение очень сложно: оно никогда не повторяется и проявляет эффект любого небольшого возмущения.

Согласно сегодняшней математической теории хаотичная система характеризуется «чувствительностью к начальным условиям». Другими словами, для того чтобы предсказать будущее состояние системы с определенностью, вам необходимо знать начальные условия с огромной точностью, в виду того что ошибки увеличиваются быстро из-за даже самой небольшой неточности.

Поэтому погоду настолько трудно прогнозировать. Теория также применялась к экономическим циклам, динамике животных популяций, в движении текучей среды, области планетарных орбит, электрического тока в полупроводниках, медицинских состояний (например, эпилептический припадок) и моделировании гонки вооружений.

Во 1960-х Edward Lorenz, метеоролог из MIT, работал над проектом по имитации закономерностей погоды на компьютере. Он случайно столкнулся с Эффектом бабочки (butterfly effect) после того, как отклонения в вычислениях на тысячные доли в значительной степени меняли процесс имитации. Эффект бабочки показывает, как изменения небольшого маштаба могут оказывать влияние на вещи большого масштаба. Это классический пример хаоса, где небольшие изменения могут повлечь большие изменения. Бабочка, хлопая своими крыльями в Гон Конге, может изменить закономерности торнадо в Техасе.

Chaos Theory (Теория хаоса) рассматривает организации/бизнес группы как сложные, динамические, нелинейные, созидательные и далекие от состояния равновесия системы. Их будущие результаты нельзя предсказать на основе прошлых и текущих событий и действий. В состоянии хаоса, организации одновременно ведут себя непредсказуемо (хаотично) и систематично (упорядоченно).

Происхождение Теории хаоса. История

другой пример теории хаоса (фрактал) Ilya Prigogine, лауреат Нобелевской премии, показал, что сложные структуры могут происходить от более простых. Это как порядок исходящий из хаоса. Henry Adams ранее описал данное явление цитатой «Chaos often breeds life, when order breeds habit». Однако Henri Poincaré был настоящим «отцом-основателем теории хаоса» . Планета Нептун была открыта в 1846 и была предсказана на основе наблюдений отклонений в орбите Урана. Король Норвегии Oscar II был готов дать награду любому, кто бы смог доказать или опровергнуть то, что солнечная система устойчива. Poincaré предложил свое решение, но когда его друг нашел ошибку в его вычислениях, награду отобрали до тех пор, пока он не смог придумать новое решение. Poincaré пришел к выводу, что решения не было. Даже законы Isaac Newton не помогали в решении этой огромной проблемы. Poincaré пытался найти порядок в системе, где его не было. Теория хаоса была сформулирована в 1960-х. Значительная и более практическая работа была проделана Edward Lorenz в 1960-х. Название хаос было придуманно Jim Yorke, ученым в области прикладной математики в университете Maryland (Ruelle, 1991).

Вычисление Chaos Theory (Теория хаоса)? Формула

В применении Теории хаоса, одиночная переменная x (n) = x (t0 + nt) с начальным временем, t0, и временем задержки, t, обеспечивает n-мерное пространство, или фазовое пространство, которое представляет собой все многомерное пространство состояния системы; может потребоваться до 4 измерений для того, чтобы представить фазовое пространство хаотичной системы. Таким образом, в течение длительного периода времени, анализируемая система выработает закономерности в рамках нелинейного временного ряда, что можно использовать для предсказания будущих состояний (Solomatine et al, 2001).

Применение Теории хаоса. Формы применения

Принципы Теории хаоса были успешно использованы для описания и объяснения разнообразных естественных и искусственных явлений. Such as:

    Предсказание эпилептических припадков. Предсказание финансовых рынков. Моделирование систем производства. Прогнозы погоды. Создание фракталов. Сгенерированные компьютером изображения с использованием принципов Chaos Theory (Теория хаоса) . (См. на этой странице.)

В условиях, когда Бизнес работает в неустойчивой, сложной и непредсказуемой среде, принципы Теории хаоса могут быть весьма ценны. Области применения могут включать:

Стадии в Теории хаоса. Процесс

Для того, чтобы контролировать хаос, необходимо контролировать систему или процесс хаоса. Для контролирования системы, необходимы:

Цель, задача, которые система должна достигнуть и выполнить. Для системы с предсказуемым поведением (детерминистическим) это может быть определенное состояние системы. Система способная достигать цель или выполнять поставленные задачи. Некоторое способы оказания влияния на поведение системы. Включают Параметры контроля/control inputs (решения, правила принятия решений или начальные состояния).

Преимущества Теории хаоса. Преимущества

Теория хаоса имеет широкое применение в современном науке и технике. Коммуникация и менеджмент могут стать свидетелями смещения парадигмы, как и некоторые другие области бизнеса. Исследования и изучение этой области в академической среде могут быть весьма полезны для бизнеса и финансового мира.

Ограничения Теории хаоса. Недостатки

Ограничения применения Теории хаоса связаны, главным образом, с выбором вводных параметров. Методы, выбранные для вычисления этих параметров зависят от динамики, лежащей в основе данных и вида анализа, которая в большинстве случаев очень сложна и не всегда точна.

Непросто найти непосредственное и прямое применение теории хаоса в деловой среде, однако определенно стоит применять анализ деловой среды с использованием знаний о хаосе.

Предположения Теории хаоса). Условия

    Небольшие действия приводят к достаточно большим последствиям, создавая хаотичную атмосферу.
Вид словаря: 
Рубрика: 
Ключевые слова: 
+1
0
-1